提高检测精准度理论与现实总是不一致的,实际情况下几乎所有的角点不会是一个真正的准确像素点。(100,5)实际上(100.234,5.789)
- 跟踪
- 三维重建
- 相机校正
知识兔亚像素定位
- 插值方法
- 基于图像矩计算
- 曲线拟合方法 (高斯曲面、多项式、椭圆曲面)
知识兔#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int max_corners = 20;
int max_count = 50;
Mat src, gray_src;
const char* output_title = "SubPixel Result";
void SubPixel_Demo(int, void*);
int main(int argc, char** argv) {
src = imread("D:/vcprojects/images/home.jpg");
if (src.empty()) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src);
cvtColor(src, gray_src, COLOR_BGR2GRAY);
namedWindow(output_title, CV_WINDOW_AUTOSIZE);
createTrackbar("Corners:", output_title, &max_corners, max_count, SubPixel_Demo);
SubPixel_Demo(0, 0);
waitKey(0);
return 0;
}
void SubPixel_Demo(int, void*) {
if (max_corners < 5) {
max_corners = 5;
}
vector<Point2f> corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
double k = 0.04;
//先做角点检测
goodFeaturesToTrack(gray_src, corners, max_corners, qualityLevel, minDistance, Mat(), blockSize, false, k);
cout << "number of corners: " << corners.size() << endl;
Mat resultImg = src.clone();
for (size_t t = 0; t < corners.size(); t++) {
circle(resultImg, corners[t], 2, Scalar(0, 0, 255), 2, 8, 0);
}
imshow(output_title, resultImg);
//再找亚像素角点
Size winSize = Size(5, 5);
Size zerozone = Size(-1, -1);
TermCriteria tc = TermCriteria(TermCriteria::EPS + TermCriteria::MAX_ITER, 40, 0.001);
cornerSubPix(gray_src, corners, winSize, zerozone, tc);
for (size_t t = 0; t < corners.size(); t++) {
cout << (t + 1) << " .point[x, y] = " << corners[t].x << " , " << corners[t].y << endl;
}
return;
}
知识兔