R 数组
数组也是 R 语言的对象,R 语言可以创建一维或多维数组。
R 语言数组是一个同一类型的集合,前面我们学的矩阵 matrix 其实就是一个二维数组。
向量、矩阵、数组关系可以看下图:
R 语言数组创建使用 array() 函数,该函数使用向量作为输入参数,可以使用 dim 设置数组维度。
array() 函数语法格式如下:
array(data = NA, dim = length(data), dimnames = NULL)
参数说明:
- data 向量,数组元素。
- dim 数组的维度,默认是一维数组。
- dimnames 维度的名称,必须是个列表,默认情况下是不设置名称的。
以下实例我们创建一个 3 行 3 列的的二维数组:
实例
# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
# 创建数组
result <- array(c(vector1,vector2),dim = c(3,3,2))
print(result)
执行以上代码输出结果为:
, , 1
[,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15
, , 2
[,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15
# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
# 创建数组
result <- array(c(vector1,vector2),dim = c(3,3,2))
print(result)
, , 1
[,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15
, , 2
[,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15
使用 dimnames 参数来设置各个维度的名称::
实例
# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
column.names <- c("COL1","COL2","COL3")
row.names <- c("ROW1","ROW2","ROW3")
matrix.names <- c("Matrix1","Matrix2")
# 创建数组,并设置各个维度的名称
result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames = list(row.names,column.names,matrix.names))
print(result)
# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
column.names <- c("COL1","COL2","COL3")
row.names <- c("ROW1","ROW2","ROW3")
matrix.names <- c("Matrix1","Matrix2")
# 创建数组,并设置各个维度的名称
result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames = list(row.names,column.names,matrix.names))
print(result)
执行以上代码输出结果为:
, , Matrix1
COL1 COL2 COL3
ROW1 5 10 13
ROW2 9 11 14
ROW3 3 12 15
, , Matrix2
COL1 COL2 COL3
ROW1 5 10 13
ROW2 9 11 14
ROW3 3 12 15
访问数组元素
如果想获取数组元素,可以通过使用元素的列索引和行索引,类似坐标形式。
实例
# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
column.names <- c("COL1","COL2","COL3")
row.names <- c("ROW1","ROW2","ROW3")
matrix.names <- c("Matrix1","Matrix2")
# 创建数组
result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames = list(row.names, column.names, matrix.names))
# 显示数组第二个矩阵中第三行的元素
print(result[3,,2])
# 显示数组第一个矩阵中第一行第三列的元素
print(result[1,3,1])
# 输出第二个矩阵
print(result[,,2])
# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
column.names <- c("COL1","COL2","COL3")
row.names <- c("ROW1","ROW2","ROW3")
matrix.names <- c("Matrix1","Matrix2")
# 创建数组
result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames = list(row.names, column.names, matrix.names))
# 显示数组第二个矩阵中第三行的元素
print(result[3,,2])
# 显示数组第一个矩阵中第一行第三列的元素
print(result[1,3,1])
# 输出第二个矩阵
print(result[,,2])
执行以上代码输出结果为:
COL1 COL2 COL3
3 12 15
[1] 13
COL1 COL2 COL3
ROW1 5 10 13
ROW2 9 11 14
ROW3 3 12 15
操作数组元素
由于数组是由多个维度的矩阵组成,所以我们可以通过访问矩阵的元素来访问数组元素。
实例
# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
# 创建数组
array1 <- array(c(vector1,vector2),dim = c(3,3,2))
# 创建两个不同长度的向量
vector3 <- c(9,1,0)
vector4 <- c(6,0,11,3,14,1,2,6,9)
array2 <- array(c(vector1,vector2),dim = c(3,3,2))
# 从数组中创建矩阵
matrix1 <- array1[,,2]
matrix2 <- array2[,,2]
# 矩阵相加
result <- matrix1+matrix2
print(result)
# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
# 创建数组
array1 <- array(c(vector1,vector2),dim = c(3,3,2))
# 创建两个不同长度的向量
vector3 <- c(9,1,0)
vector4 <- c(6,0,11,3,14,1,2,6,9)
array2 <- array(c(vector1,vector2),dim = c(3,3,2))
# 从数组中创建矩阵
matrix1 <- array1[,,2]
matrix2 <- array2[,,2]
# 矩阵相加
result <- matrix1+matrix2
print(result)
执行以上代码输出结果为:
[,1] [,2] [,3]
[1,] 10 20 26
[2,] 18 22 28
[3,] 6 24 30
另外我们可以使用 apply() 元素对数组元素进行跨维度计算,语法格式如下:
apply(x, margin, fun)
参数说明:
x 数组
margin 数据名称
fun 计算函数
以下我们使用 apply() 函数来计算数组两个矩阵中每一行对数字之和。
实例
# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
# 创建数组
new.array <- array(c(vector1,vector2),dim = c(3,3,2))
print(new.array)
# 计算数组中所有矩阵第一行的数字之和
result <- apply(new.array, c(1), sum)
print(result)
# 创建两个不同长度的向量
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
# 创建数组
new.array <- array(c(vector1,vector2),dim = c(3,3,2))
print(new.array)
# 计算数组中所有矩阵第一行的数字之和
result <- apply(new.array, c(1), sum)
print(result)
执行以上代码输出结果为:
, , 1
[,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15
, , 2
[,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15