SI模型
import numpy as np
import matplotlib.pyplot as plt
import smallworld as sw
#邻接矩阵
a = sw.a
# 感染率
beta = sw.beta
#初始患者
origin = sw.origin
def si_(a, beta, origin):
#总人数
n = a.shape[0]
#控制符
judge = 1
#未感染人群
s = np.arange(n)
s = np.delete(s, origin)
#上一轮或原先感染人群
i = origin
#感染者记录
r = []
#感染时间记录
t = []
#感染人数记录
speed = []
#计时器
h = 0
#总感染者
infected = i
#开始传播
while judge == 1:
temp_i = []
#感染人数
m = len(infected)
for j in range(0, m):
node = int(infected[j])
asd = []
for k in range(0, n):
if a[node, k] == 1:
asd.append(k)
#感染者邻接的未感染者
asd2 = np.intersect1d(asd, s)
#随机生成被感染率
num = np.random.rand(len(asd2)) - beta
#该感染者传播的新感染者
asd_final =[]
for k in range(0, len(asd2)):
if num[k] <= 0:
asd_final.append(asd2[k])
#这一轮总的新感染者
temp_i = np.union1d(temp_i, asd_final)
s = np.setdiff1d(s, asd_final)
if len(i) > 0:
for k in range(0, len(i)):
r.append(i[k])
t.append(h)
#新一轮感染人群
i = temp_i
infected = np.union1d(infected, i)
#所有人都被感染则跳出循环
if len(s) == 0:
judge = 0
if len(i) > 0:
for k in range(0, len(i)):
r.append(i[k])
t.append(h)
speed.append(len(r))
h = h+1
coverage = r
for j in range(h, 2*h):
speed.append(speed[j-1])
print(speed)
plt.plot(speed, "-ro", label='Infectious')
plt.title('SI')
plt.legend()
plt.show()
si_(a, beta, origin)
知识兔效果图:
SIR模型
import numpy as np
import matplotlib.pyplot as plt
import smallworld as sw
#邻接矩阵
a = sw.a
#感染率
beta = sw.beta
#复原率
gama = sw.gama
#初始患者
origin = sw.origin
def sir_(a, origin, beta, gama):
#总人数
n = a.shape[0]
#控制符
judge = 1
#未感染人群
s = np.arange(n)
s = np.delete(s, origin)
# 未感染人数记录
snum = list()
snum.append(len(s))
#感染人群
i = origin
#感染人数记录
inum = list()
inum.append(len(i))
#复原人群
r = []
#复原人数记录
rnum = list()
rnum.append(0)
#计时器
h = 1
#开始传播
while judge ==1:
#新一轮感染者
temp_i = []
m = len(i)
#感染
for j in range(0, m):
#感染者
node = int(i[j])
asd = []
for k in range(0, n):
if a[node, k] == 1:
asd.append(k)
#未被感染者且不为复原者
asd2 = np.intersect1d(asd, s)
asd2 = np.setdiff1d(asd2, r)
num = np.random.rand(len(asd2)) - beta
#新感染者
asd_final = []
for k in range(0, len(asd2)):
if num[k] <= 0:
asd_final.append(asd2[k])
temp_i = np.union1d(temp_i, asd_final)
s = np.setdiff1d(s, asd_final)
#复原
num = np.random.rand(m) - gama
asd = []
asd_final = []
for k in range(0, m):
if num[k] <= 0:
asd.append(k)
asd_final.append(i[k])
#原感染者部分复原
r = np.union1d(r, asd_final)
i = np.delete(i, asd)
#这一轮后总感染者
i = np.union1d(i, temp_i)
snum.append(len(s))
inum.append(len(i))
rnum.append(len(r))
h = h + 1
if len(i) == 0:
judge = 0
for j in range(h, h*2):
snum.append(snum[j-1])
inum.append(inum[j - 1])
rnum.append(rnum[j - 1])
plt.plot(snum, "-bo", label='Susceptibles')
plt.plot(inum, "-ro", label='Infectious')
plt.plot(rnum, "-go", label='Recovereds')
plt.title('SIR')
plt.legend()
plt.show()
sir_(a, origin, beta, gama)
知识兔效果图:
SIS模型
import numpy as np
import matplotlib.pyplot as plt
import BA
import random
#邻接矩阵
a = BA.a
#感染率
beta = 0.6
#复原率
gama = 0.3
#初始感染者
origin = random.sample(range(0, a.shape[0]), 5)
def sis_(a, origin, beta, gama):
#总人数
n = a.shape[0]
#未感染人群
s = np.arange(n)
s = np.delete(s, origin)
#感染人群
i = origin
#感染人数记录
speed = []
speed.append(len(i))
#计时器
h = 1
while h < 70:
temp_i = []
m = len(i)
for j in range(0, m):
node = int(i[j])
asd = []
for k in range(0, n):
if a[node, k] == 1:
asd.append(k)
asd2 = np.intersect1d(asd, s)
num = np.random.rand(len(asd2)) - beta
asd_final = []
for k in range(0, len(asd2)):
if num[k] <= 0:
asd_final.append(asd2[k])
temp_i = np.union1d(temp_i, asd_final)
s = np.setdiff1d(s, asd_final)
num = np.random.rand(m) - gama
asd = []
asd_final = []
for j in range(0, m):
if num[j] <= 0:
asd.append(j)
asd_final.append(i[j])
s = np.union1d(s, asd_final)
i = np.delete(i, asd)
i = np.union1d(i, temp_i)
speed.append(len(i))
h = h + 1
snum = []
for j in range(0, h):
snum.append(n - speed[j])
plt.plot(speed, "-ro", label='Infectious')
plt.plot(snum, "-bo", label='Susceptibles')
plt.title('SIS')
plt.legend()
plt.show()
sis_(a, origin, beta, gama)
知识兔效果图:
LT模型
import numpy as np
import smallworld as sw
import networkx as nx
import matplotlib.pyplot as plt
#邻接矩阵
a = sw.a
#节点度数, 1/b是其他节点对该节点的影响力
b = sw.b
#节点阀值
beta = sw.beta
#原激活节点
origin = sw.origin
#超过beta(如50%)的邻接节点处于激活状态,该节点才会进入激活状态
def lt_(a, b, origin, beta):
#节点数
n = a.shape[0]
#控制符
judge = 1
#未激活节点
s = np.arange(n)
s = np.delete(s, origin)
#激活节点
i = origin
while judge == 1:
#该轮激活节点
temp_i = []
#激活节点个数
m = len(i)
for j in range(0, m):
node = int(i[j])
asd = []
for k in range(0, n):
if a[node, k] == 1:
asd.append(k)
#找到相邻的未激活节点
asd2 = np.intersect1d(asd, s)
asd_final = []
for k in range(0,len(asd2)):
num = 0
#该未激活节点相邻的激活节点个数
for t in range(0, m):
if a[int(i[t]), asd2[k]] == 1:
num = num + 1
if 1 / b[asd2[k]] * num >= beta:
asd_final.append(asd2[k])
temp_i = np.union1d(temp_i, asd_final)
s = np.setdiff1d(s, asd_final)
#将新激活节点合并到原激活节点中
i = np.union1d(i, temp_i)
#如果该轮没有新激活节点,那之后都不会再有,跳出循环
if len(temp_i) == 0:
judge = 0
#输出新的网络状况
color = []
for j in range(0, n):
color.append('b')
for j in range(0, len(i)):
color[int(i[j])] = 'r'
g = nx.from_numpy_matrix(a)
nx.draw(g, with_labels=True, node_color=color)
plt.show()
lt_(a, b, origin, beta)
知识兔效果图:
数据生成代码(WS)
import numpy as np
import random
import networkx as nx
import matplotlib.pyplot as plt
n = 50
k = 5
p = 0.1
#建立小世界网
def sw_(n, k, p):
m = np.zeros((n, n), dtype=int)
#节点度数
d = np.zeros(n, dtype=int)
#构建环形网络
for i in range(0, n):
for j in range(0, n):
if j > i and j <= i+k:
m[i, j] = 1
m[j, i] = 1
d[i] = d[i] + 1
d[j] = d[j] + 1
if i+k >= n and j <= i+k-n:
m[i, j] = 1
m[j, i] = 1
d[i] = d[i] + 1
d[j] = d[j] + 1
#讲规则网络转换为随机网络
for i in range(0, n):
for j in range(0, n):
if m[i, j] == 1:
rand_num1 = np.random.rand(1)
if rand_num1 <= p:
rand_num2 = np.random.rand(1)
temp = np.random.permutation(np.arange(n))
if rand_num2 < 0.5:
for l in range(0, n):
if i != temp[l] and m[i, temp[l]] == 0:
m[i, temp[l]] = 1
m[temp[l], i] = 1
d[j] = d[j] - 1
d[temp[l]] = d[temp[l]] + 1
break
else:
for l in range(0, n):
if j != temp[l] and m[j, temp[l]] == 0:
m[j, temp[l]] = 1
m[temp[l], j] = 1
d[i] = d[i] - 1
d[temp[l]] = d[temp[l]] + 1
break
m[i, j] = 0
m[j, i] = 0
return m, d
a, b = sw_(n, k, p)
#LT预设
#预设阀值
beta = 0.5
#初始激活节点
q = np.random.randint(10, 15)
origin = random.sample(range(0, n), q)
知识兔