import numpy as np
np.__version__ #版本
#由于python的list不要求存储同样的类型,但是效率不高。
L = [i for i in range(10)]
L[5] = "Asuka"
#而调用array的效率相比更好,但是它没有将数据当做向量或者矩阵,不支持基本运算,会报错。
#建议用numpy中的array
nparr = np.array([i for i in range(10)])
nparr[5] = 100.0 #整数可以换成浮点型
nparr.dtype #数据类型
np.zeros(10) #0向量
np.zeros(10, dtype=float)
np.zeros((3, 5)) #0矩阵
np.zeros(shape=(3, 5), dtype=int)
np.ones(10) #单位向量
np.ones((3, 5)) #单位矩阵
np.full((3, 5), 666) #填充666
np.full(fill_value=666, shape=(3, 5))
np.arange(0, 20, 2) # 2为step,而且与range相比,是可以用小数的
np.arange(0,10,1.5)
np.linspace(0, 20, 11) #等分
np.random.randint(0, 10) #0~10之间的随机数
np.random.randint(0, 10, size=10) #长度为10的向量
np.random.randint(0, 10, size=(3,5)) #矩阵
np.random.seed(666) #随机种子,再次调用时会产生相同的随机数
np.random.random() #返回在[0.0,1.0]之间的随机浮点数
np.random.random((3,5))
np.random.normal() #均值为0,方差为1,符合正态分布的一个数
np.random.normal(10, 100) #均值为10,方差为100
np.random.normal(0, 1, (3, 5))
# 查询操作
① np.random.normal?
② help(np.random.normal)
X = np.arange(15).reshape((3, 5))
X.ndim #维度
X.shape #形状
X.size #大小
X[:2, :3]
X[:2][:3] # 与前者结果不同,在numpy中使用","做多维索引
X[:2, ::2]
X[::-1, ::-1]
subX = X[:2, :3].copy() #副本,数据的变动不会影响原始数据
X.reshape(5, 3) #换形状
X.reshape(3, -1)
X.reshape(5, -1)
# 向量合并
x = np.array([1, 2, 3])
y = np.array([3, 2, 1])
z = np.array([666, 666, 666])
np.concatenate([x, y, z])
# 矩阵合并
A = np.array([[1, 2, 3],[4, 5, 6]])
np.concatenate([A, A]) # 纵向合并
np.concatenate([A, A], axis=1) #横向合并
# 但是,concatenate是无法直接对向量和矩阵进行合并的,要讲向量转成矩阵在合并,如下:
np.concatenate([A, z.reshape(1, -1)])
# numpy提供了更便捷的vstack与hstack直接进行垂直or水平合并
np.vstack([A, z])
B = np.full((2,2), 100)
np.hstack([A, B])
# 向量分割
x = np.arange(10)
x1, x2 = np.split(x, [5]) # 01234|56789
x1, x2, x3 = np.split(x, [3, 7]) # 012|3456|789
# 矩阵分割
A = np.arange(16).reshape((4, 4))
A1, A2 = np.split(A, [2]) #垂直方向
A1, A2 = np.split(A, [2], axis=1) #水平方向
#当然,numpy也提供了直接分割的方法:vsplit/hsplit
upper, lower = np.vsplit(A, [2]).
left, right = np.hsplit(A, [2])
#每个数都乘2
import numpy as np
L = np.arange(10)
%%time
A = np.array(2*e for e in L) #11ms
%%time
A = 2 * L #大概3ms的亚子,这样快
X = np.arange(1, 16).reshape((3, 5))
X + 1 #全部元素+1,减乘除同理
X // 2 #除且取整
X ** 2 #平方
X % 2 #取模
1 / X #倒数
np.abs(X) #绝对值
np.exp(X) #exp
np.exp2(X) #以2为底,X为幂
np.power(3, X) #以3为底,X为幂
np.log(X) #lnx
np.log2(X)
np.log10(X)
# 矩阵运算
A = np.arange(4).reshape(2, 2)
B = np.full((2, 2), 10)
A * B # 对应位置的元素相乘
A.dot(B) # 矩阵乘法
A.T # 转置
invA = np.linalg.inv(A) #逆矩阵
invA.dot(A) #原矩阵*逆矩阵=单位阵,前提是方阵,如果不是方阵,则error
# 对于非方阵,需要提及伪逆,即非方阵的求逆
X = np.arange(16).reshape((2, 8))
pinvX = np.linalg.pinv(X)
X.dot(pinvX)
# 向量与矩阵的运算
v = np.array([1, 2])
A = np.arange(4).reshape(2, 2)
v + A #每一行都加上v,其内在机理是 np.vstack([v] * A.shape[0]) + A
np.tile(v, (2, 1)) + A #也可这么写
np.tile(v, (2, 2))
v * A # 对应位置的元素相乘
v.dot(A) #1×2的v与2×2的A相乘
A.dot(v) #2×2的A和转置后2×1的v相乘
# 聚合函数
import numpy as np
X = np.arange(16).reshape(4,-1)
np.sum(X) #求和
np.sum(X, axis=0) #按列求和
np.sum(X, axis=1) #按行求和
np.prod(X) # X中各元素乘积
np.mean(X) #均值
np.median(X) #中位数
big_array = np.random.rand(1000000)
np.percentile(big_array, q=50) #百分位数
for percent in [0, 25, 50, 75, 100]: #打印四分位数
print(np.percentile(big_array, q=percent))
np.var(big_array) #方差
np.std(big_array) #标准差
x = np.random.normal(0, 1, 1000000) #正态分布
np.mean(x)
np.std(x)
np.argmin(x) #最小值的索引
np.argmax(x) #最大值的索引
x = np.arange(16)
np.random.shuffle(x) #乱序
np.sort(x) #排序,但是x并未改变
x.sort() #排序
np.argsort(x) # 排序索引
np.partition(x, 3) #对指定的标准点3的两侧分别进行排序
np.argpartition(x, 3) #对指定的标准点3的两侧分别进行排序的索引
#对于矩阵
X = np.random.randint(10, size=(4,4))
np.argsort(X, axis=1) #水平方向的排序的索引
np.argpartition(X, 2, axis=1) #带标准点2的水平方向的排序的索引
#比较操作
import numpy as np
x = np.arange(16)
np.random.shuffle(x)
np.count_nonzero( x <= 3) #统计满足条件的元素数
np.sum(x <= 3) #统计满足条件的元素数
np.sum((x > 3) & (x < 10)) #不能是&&
np.sum((x % 2 == 0) | (x > 10)) #统计满足条件的元素数
np.sum(~(x == 0)) #统计满足条件的元素数
np.any(x == 0)
np.any(x < 0)
np.all(x > 0)
np.all(x >= 0)
X = x.reshape(4, -1)
np.all(X > 0, axis=1)
np.sum(X % 2 == 0, axis=0)
np.sum(X % 2 == 0, axis=1)
知识兔